Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Mutations in theTP53tumor suppressor gene occur in >80% of the triple-negative or basal-like breast cancer. To test whether neomorphic functions of specificTP53missense mutations contribute to phenotypic heterogeneity, we characterized phenotypes of non-transformed MCF10A-derived cell lines expressing the ten most common missense mutant p53 proteins and observed a wide spectrum of phenotypic changes in cell survival, resistance to apoptosis and anoikis, cell migration, invasion and 3D mammosphere architecture. The p53 mutants R248W, R273C, R248Q, and Y220C are the most aggressive while G245S and Y234C are the least, which correlates with survival rates of basal-like breast cancer patients. Interestingly, a crucial amino acid difference at one position—R273C vs. R273H—has drastic changes on cellular phenotype. RNA-Seq and ChIP-Seq analyses show distinct DNA binding properties of different p53 mutants, yielding heterogeneous transcriptomics profiles, and MD simulation provided structural basis of differential DNA binding of different p53 mutants. Integrative statistical and machine-learning-based pathway analysis on gene expression profiles with phenotype vectors across the mutant cell lines identifies quantitative association of multiple pathways including the Hippo/YAP/TAZ pathway with phenotypic aggressiveness. Further, comparative analyses of large transcriptomics datasets on breast cancer cell lines and tumors suggest that dysregulation of the Hippo/YAP/TAZ pathway plays a key role in driving the cellular phenotypes towards basal-like in the presence of more aggressive p53 mutants. Overall, our study describes distinct gain-of-function impacts on protein functions, transcriptional profiles, and cellular behaviors of different p53 missense mutants, which contribute to clinical phenotypic heterogeneity of triple-negative breast tumors.more » « less
-
Abstract Solid tumors develop within a complex environment called the tumor microenvironment (TME), which is sculpted by the presence of other cells, such as cancer‐associated fibroblasts (CAFs) and immune cells like macrophages (Mφs). Despite the presence of immune cells, tumor cells orchestrate a tumor‐supportive environment through intricate interaction with the components of the TME. However, the specific mechanism by which this intercellular dialogue is regulated is not fully understood. To that end, the development of an organotypic 3D breast TME‐on‐a‐chip (TMEC) model, integrated with single‐cell RNA sequencing analysis, is reported to mechanistically evaluate the progression of triple‐negative breast cancer (TNBC) cells in the presence of patient‐derived CAFs and Mφs. Extensive functional assays, including invasion and morphometric characterization, reveal the synergistic influence of CAFs and Mφs on tumor cells. Furthermore, gene expression and pathway enrichment analyses identify the involvement of theKYNUgene, suggesting a potential immune evasion mechanism through the kynurenine pathway. Lastly, the pharmacological targeting of the identified pathway is investigated.more » « less
-
Abstract Baculovirus mediated-insect cell expression systems have been widely used for producing heterogeneous proteins. However, to date, there is still the lack of an easy-to-manipulate system that enables the high-throughput protein characterization in insect cells by taking advantage of large existing Gateway clone libraries. To resolve this limitation, we have constructed a suite of Gateway-compatible pIEx-derived baculovirus expression vectors that allow the rapid and cost-effective construction of expression clones for mass parallel protein expression in insect cells. This vector collection also supports the attachment of a variety of fusion tags to target proteins to meet the needs for different research applications. We first demonstrated the utility of these vectors for protein expression and purification using a set of 40 target proteins of various sizes, cellular localizations and host organisms. We then established a scalable pipeline coupled with the SONICC and TEM techniques to screen for microcrystal formation within living insect cells. Using this pipeline, we successfully identified microcrystals for ~ 16% of the tested protein set, which can be potentially used for structure elucidation by X-ray crystallography. In summary, we have established a versatile pipeline enabling parallel gene cloning, protein expression and purification, and in vivo microcrystal screening for structural studies.more » « less
-
μNS is a 70 kDa major nonstructural protein of avian reoviruses, which cause significant economic losses in the poultry industry. They replicate inside viral factories in host cells, and the μNS protein has been suggested to be the minimal viral factor required for factory formation. Thus, determining the structure of μNS is of great importance for understanding its role in viral infection. In the study presented here, a fragment consisting of residues 448–605 of μNS was expressed as an EGFP fusion protein in Sf9 insect cells. EGFP-μNS(448–605)crystallization in Sf9 cells was monitored and verified by several imaging techniques. Cells infected with the EGFP-μNS(448–605)baculovirus formed rod-shaped microcrystals (5–15 µm in length) which were reconstituted in high-viscosity media (LCP and agarose) and investigated by serial femtosecond X-ray diffraction using viscous jets at an X-ray free-electron laser (XFEL). The crystals diffracted to 4.5 Å resolution. A total of 4227 diffraction snapshots were successfully indexed into a hexagonal lattice with unit-cell parametersa = 109.29,b= 110.29,c= 324.97 Å. The final data set was merged and refined to 7.0 Å resolution. Preliminary electron-density maps were obtained. While more diffraction data are required to solve the structure of μNS(448–605), the current experimental strategy, which couples high-viscosity crystal delivery at an XFEL within cellulocrystallization, paves the way towards structure determination of the μNS protein.more » « less
-
Abstract The Human Proteome Organization (HUPO) launched the Human Proteome Project (HPP) in 2010, creating an international framework for global collaboration, data sharing, quality assurance and enhancing accurate annotation of the genome-encoded proteome. During the subsequent decade, the HPP established collaborations, developed guidelines and metrics, and undertook reanalysis of previously deposited community data, continuously increasing the coverage of the human proteome. On the occasion of the HPP’s tenth anniversary, we here report a 90.4% complete high-stringency human proteome blueprint. This knowledge is essential for discerning molecular processes in health and disease, as we demonstrate by highlighting potential roles the human proteome plays in our understanding, diagnosis and treatment of cancers, cardiovascular and infectious diseases.more » « less
An official website of the United States government
